

CHAPS: A Compact Hyperspectral Imager for Atmospheric Composition Space Remote Sensing

APL: William H. Swartz, John Boldt, Frank Morgan, Walter Zimbeck, Steven Storck, Zachary Post

NASA/GSFC: Nickolay Krotkov, Lok Lamsal, Scott Janz, Matthew Kowalewski, Can Li

TNO: Gerard Otter, Floris van Kempen, Ludger van der Laan

KNMI: Pepijn Veefkind, Pieternel Levelt

Funding: NASA ESTO IIP-19 (80NSSC20K0323)

APL and TNO internal R&D

CHAPS improves spatial/temporal resolution, important for understanding air pollution emissions and evolution

Air pollution spans the globe but is highly correlated with human population.

Covid-19 lockdowns led to a dramatic, if temporary, reduction in air pollution.

- Air pollution has negative impact on human and ecological health
- Changes in pollution driven by changes in energy usage, technology, and regulation
- NO₂ and CO₂ emissions are correlated
- Air pollution disparities reflect racial, ethnic, and income inequality in the US
- Need for high-spatially and -temporally resolved measurements of air pollution
- CHAPS is
 - miniaturized
 - targeted
- CHAPS can
 - provide more cloud-free observations
 - effectively separate clustered point sources in polluted regions
 - understand mixing of emissions, their transport and transformation; short-term evolution of pollution plumes

Freeform optics enables miniaturization

https://www.eyemartexpress.com/lenses

TROPOMI (launched 2017) with TNO optics • State of the art, providing global surveys

- Freeform optics: An optical surface that lacks translational or rotational symmetry
- Freeform optics offers superior optical aberration correction, compared to spherical and aspherical alternatives
- In an imaging spectrometer, this has several advantages
 - spectral band broadening: increased spectral range
 - spatial broadening: increased slit length (and swath width)
 - increased compactness: unprecedented miniaturization

Proposed investigation

- Design, fabricate, calibrate, and test prototype CHAPS-D, conforming to 6U constraints and space requirements, where reasonable
- Conduct ground-based, zenith-sky measurements as a real-world test of the instrument under controllable conditions and ambient pollution at **GSFC**
- Fly CHAPS-D on the NASA B200 King Air from LaRC, making nadir observations of tropospheric pollution
- Retrieve tropospheric NO₂* vertical column density using well-established techniques, demonstrating end-to-end capability
- Compare retrieved NO₂* (and others) with correlative measurements on the ground, potentially from another instrument co-manifested on the aircraft and operational space products from OMI and TROPOMI
- Use lessons learned to improve the CHAPS design and define the spacecraft interface requirements

Also SO₂, ozone, glyoxal, clouds

Driving requirements: Science-quality measurements

Parameter	Value	Driver		
Spatial sampling	<1 km (space) <40 m (aircraft)	Adequate isolation of individual pollution sources		
Swath width (across track)	100 km (space) 400 m (aircraft)	Adequate coverage of urban environments		
Wavelength range	300–500 nm	Retrievals from NO ₂ , SO ₂ , ozone, glyoxal, cloud absorption features in this range		
Wavelength resolution	0.6 nm	Needed to resolve trace species absorption features		
Spectral oversampling	>3x	Needed to resolve trace species absorption features		
Signal-to-noise ratio	>500	SNR required for spectral resolution and oversampling of NO ₂		

CHAPS-D subsystems

- Optics and detector package are being developed to fit within a 6U CubeSat payload volume for a future space mission
- Camera electronics and support equipment are being developed specifically for aircraft use, to be replaced by high-TRL electronics for a future space mission

CHAPS-D Support Electronics CHAPS-D Camera Electronics

APL - Software

APL – Interface Electronics and Firmware

COTS – Hardware

COTS - FPGA Board

CHAPS-D Detector Package

APL - Design

APL – Manufacturing

CHAPS-D Optics

TNO – Optical Design, Housing Design

APL – Housing Manufacturing

Grating

Telescope

mirror 2

Slit

Preliminary design meets performance requirements

- optical layout
- system etendue
- optical throughput
- spot size and variation
- keystone/smile
- spectral/spatial resolution
- stray light
- bright–dark scene contrast
- grating orders
- polarization
- mechanical tolerance analysis
- where possible, computing impacts on L2 retrievals

Leveraging additive manufacturing (3-D printing)

- Additive manufacturing (AM) provides a number of potential advantages
 - Using topology optimization for mass, thermal, vibration, and (additive) manufacturability
 - Internal baffling fine structure (critical for stray light control) is very amenable to AM
 - Reduces complexity of housing (idea: AM entire mechanical structure and light baffling in one go)
 - AM of the mirrors would reduce mass
 - Reduces manufacturing time and cost of future instruments
- Ongoing work that benefits CHAPS-D*
 - Selection of next-generation aluminum alloy for space (optical) applications: Strength, compatibility with coatings
 - Design of light baffling surface structures

*APL and TNO internal funding

Telescope internal baffling (TNO for ESA)

JUICE JOEE Collimators (APL for NASA)

Metal AM: Laser melting video

Mechanical structure incorporates additive manufacturing

- Athermal design
- Design optimized for additive manufacturing (3-D printing)
 - High-strength aluminum alloy
 - Monolithic housing integrating multiple functionalities
 - Integrated stray light baffling (including baffles, vanes, and surface textures)
 - Integrated struts, cable tie hooks
 - Post-machining using 5-axis milling
- Topology optimization: Iterative algorithm that generates freeform (not referring to the optics) designs according to an objective and constraints
- Half-open structure for cleaning, inspection, and coating
- Optical elements mounted directly on assembly tolerances
- Alignment using 5- or 6-DoF manipulation of the detector

Component	Traditional	AM
Housing		•
Mirrors	6	2
Mirror mounts*		8
Slit	•	
Grating mount	•	
Detector mount	•	
Earth baffle*		•
Stray light baffles*		•
Thermal pathways*		•
Structural pathways* (struts)		•

^{*} integrated into housing

AM alloy selection

- Developing use of "next-generation" Al alloys
- Key parameters considered
 - Strength
 - Stiffness
 - Dimensional stability
 - Thermal conductivity
 - CTE
 - Porosity
 - Particle count after printing
 - Printability
 - Compatibility with NiP plating, diamond turning (for mirrors)
 - Compatibility with black coatings
- Candidate materials selected for test
 - 6061 RAM2
 - A20X
 - Scalmalloy
 - 7A77

Candidate AM aluminum alloys

Material	Yield (MPa)	Elong. (%)	Th. Cond. (W/mK)	Composition
AlSi10Mg	230	11.5	173	Si: 10% Mg: 0.35%
Elementum 6061 RAM2 2% ceramic	285	12.5	119	Mg: 1.0% Si: 0.6% Cu: 0.3% Fe: 0.7%
NanoAl Addalloy 5T 5000 Series	380	15	NA	Mg: 4.0% Zn: 3.0% Mn: 0.8% Zr: 0.6%
Elementum 2024 RAM2 2% ceramic	400	10	NA	Cu: 4.6% Mg: 1.4% C: 1.0% Mg: 0.7%
AMT Ltd A20X (similar to A205 castable alloy)	440	13	NA	Cu: 4.6% Ti: 3.4% B: 1.4% Ag: 0.8%
Carpenter Additive Scalmalloy	490	14	NA	Mg: 4.5% Sc: 0.7% Mn: 0.5% Zr: 0.4%
Elementum 7050 RAM2 2% ceramic particles)	507	5%	NA	Zn: 6.2% Mg: 2.3% Cu: 2.3% Zr: 0.12%
HRL Labs 7A77	537	10	NA	Zn: 5.3% Mg: 2.5% Cu: 1.6% Zr: 2.0%
NanoAl Addalloy 7S	630	6	130	Zn: 5.6% Mg: 2.5% Cu: 1.6%

AM optical components compatible with post-processing

Scalmalloy, A20X compatible with mirror post-processing

3-D printed mirror "blanks"

AM Scalmalloy mirror (NiP plating and polishing by TNO)

AM-enabled integral light baffles

Shown in future presentation, pending IP disclosure review

Summary

CHAPS is a compact imaging spectrometer for atmospheric composition measurements

- Freeform optics, leveraging ESA TROPOMI heritage
- Additive manufacturing utilized for mechanical structure and (maybe) mirrors
- Designed to 6U CubeSat constraints
- Demonstration focused on air pollution

CHAPS-D currently in design phase

- Preliminary optical design complete
- Mechanical, electronics design ongoing
- PDR fall 2021; CDR winter 2021/2
- Ground-based, airborne demonstration 2022/3

CHAPS-D instrument within CubeSat form factor

CHAPS-D additively manufactured mirror "blanks"

Funding: NASA ESTO IIP-19 (80NSSC20K0323)

